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Abstract

This note derives the analytical conditions for determinacy in a canonical New Keynesian
model under an exogenous money growth rule. Under cash-when-I’m-done timing the model
is always determinate while indeterminacy can arise with cash-in-advance timing.
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1. Introduction

A large body of the monetary policy literature has emphasized the importance of looking at
monetary policy rules that lead to determinate equilibria. For instance, Clarida et. al. (2000)
argue that a violation of the Taylor principle by the pre-Volcker rule may have contained the
seeds of macroeconomic instability amid the Great Inflation.

Determinacy of the canonical New Keynesian model under a variety of interest rate rules has
been analyzed by Bullard and Mirtra (2002) among others. Under such monetary regimes,
there is no need to pay attention to the demand for money. Money demand is only usefull
for purposes of implementation, backing out the ammount of money needed to achieve the
target interest rate.

On the other hand, in the presence of exogenous money growth rules, money demand plays a
key role for determinacy. Carlstrom and Fuerst (2003) provide the analytical conditions for
determinacy in a standard production (flexible prices) and an endowment economy. To date,
there is no equivalent analytical proof for determinacy in a canonical New Keynesian model,
although Galí (2015)1 states that through numerical analysis, under cash-when-I’m-done
(CWID) timing, an exogenous money growth rule is shown to always yield determinacy. The
contribution of this letter is to provide such analytical characterization. We prove that a

1See Galí (2015) page 75.
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money growth rule always guarantees determinacy under CWID timing and we characterize
the parameter range leading to indeterminacy under cash-in-advance (CIA) timing.

2. The Model

For the exposition of the canonical New Keynesian model, we closely follow Galí (2015),
Chapter 3.

Households

The economy is populated by a continuum of mass 1 of identical and infinitely lived households.
Households preferences are represented by a CRRA separable utility function:

∞∑
t=0

βt
(
C1−σ
t − 1
1− σ + (At/Pt)1−ν − 1

1− ν − N1+ϕ
t

1 + ϕ

)

where Ct is consumption at t, At the nominal value of a generic asset, Pt the price level and
Nt employment or hours worked. Households face the following budget constraint:

PtCt +QtBt +Mt ≤ Bt−1 +Mt−1 +WtNt +Dt + Tt

where Mt denotes money holdings in period t, Bt represents the quantity of one-period
nominal riskless bonds held at t and Qt their price, Wt denotes the nominal wage at t, Tt
and Dt transfers and dividends at t.

For our choice of timing we follow Carlstrom and Fuerst (2003). At = Mt−1 for CIA timing
and At = Mt for CWID timing. Solving the household’s maximization problem leads to the
following log-linear money demand equations:

CIA money demand : mt − pt = σ

ν
yt − ηit −

(1− ν
ν

)
Et{πt+1} (1)

CWID money demand : mt − pt = σ

ν
yt − ηit (2)

where η ≡ 1
ν(exp{i}−1) is the implied interest semi-elasticity of money demand and i is the

steady state nominal interest rate. From now onwards we set ν = σ, as it implies the natural
assumption of unit elasticity with respect to income, required for a stable long-run money
demand.

The money-in-the-utility-function approach, whereby real money balances are an argument
of the utility function, is taken up as it covers both transaction cost and shopping time
models, Feenstra (1986). In addition, since we assumed separability, neither Uc,t nor Un,t
depend on real money balances. This would allow oneself to derive the model without
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money in the utility function and then postulate an ad-hoc money demand as is usually done.
Separability is a common assumption due to non-separability being quantitatively neglegible,
see e.g. McCallum (2001) and Woodford (2011).

The household’s intertemporal optimality condition, jointly with the goods market clearing
condition (yt = ct), delivers the familiar log-linearized dynamic IS equation.

Dynamic IS equation : ỹt = − 1
σ

(it − Et{πt+1} − rnt ) + Et{ỹt+1} (3)

where Et{·} relates to the expectational operator conditional on information at time t, and σ
to the intertemporal elasticity of substitution and risk aversion.

The Dynamic IS equation determines the output gap,2 ỹt for any given natural interest rate
rnt and real interest rate: rt ≡ it − Et{πt+1}; path.

Firms

In the canonical New Keynesian model, characterized by imperfect competition and Calvo
pricing in the goods market, the following relation determines inflation, πt, for any given
output gap path.

New Keynesian Phillips curve : πt = βEt{πt+1}+ κỹt (4)

with κ relating to the degree of price stickiness.

Monetary policy

Note that real money balances, lt ≡ mt − pt, inflation and money growth are related through
the following identity:

l̂t−1 = l̂t + πt −∆mt (5)
where ∆mt is the exogenous growth rate of the money supply

Equilibrium

The previous money demand equations, rewritten in terms of real money balances, lt ≡ mt−pt
and the output gap, by adding and subtracting ynt , are used to eliminate the nominal interest
rate from equation 3.

2The output gap is defined as the deviation of output from the natural, frictionless, output: ỹt ≡ yt − yn
t
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The described dynamic system, characterized by equations 1 or 2, 3, 4 and 5, can be
summarized in the following compact form, as in Galí (2015) page 75:

AM,0

 ỹtπt
l̂t−1

 = AM,1

Et{ỹt+1}
Et{πt+1}

l̂t

+ BM

 r̂nt
ŷnt

∆mt


where:

AM,0 =

1 + ση 0 0
−κ 1 0
0 −1 1

 ; AM,1 =

ση Ω 1
0 β 0
0 0 1

 ; BM =

η −1 0
0 0 0
0 0 −1


with Ω ≡ η under CWID timing and Ω ≡ 1−σ

σ
+ η for CIA timing. Some constants, that leave

the dynamics of the model unaffected, are ommited and subtracted to obtain l̂, ŷn and r̂n;
where " ˆ" on top of a variable denotes it’s deviation from the steady state.

3. Determinacy Conditions

For the previously described linear dynamic system, a stationary solution will exist and be
unique if and only if AM ≡ AM,0

−1AM,1 has two eigenvalues inside the unit circle and one
eigenvalue outside (or on) the unit circle, see Blanchard and Kahn (1980).

After some algebra:

AM =


ση

1+ση
η

1+ση
1

1+ση
κση

1+ση
κη

1+ση + β κ
1+ση

κση
1+ση

κη
1+ση + β κ

1+ση + 1


whose eigenvalues are given by the roots of the following polynomial3:

p(x) = −︸︷︷︸
a

x3 +
(
ση + κ(1 + Ω)

1 + ση
+ 1 + β

)
︸ ︷︷ ︸

b

x2−
(

(1 + β) ση

1 + ση
+ κΩ

1 + ση
+ β

)
︸ ︷︷ ︸

c

x+ βση

1 + ση︸ ︷︷ ︸
d

where σ > 0; η > 0; κ > 0 and β ∈ (0, 1).

Proposition

The system is determinate if and only if Ω > −1
2 −

(1+ση)(1+β)
κ

− (1+β)ση
κ

3A condition for the inversion of AM,0 is: 1 + ση 6= 0; but this condition will never be violated due to the
assumptions on σ and η.
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Proof

We will first explore the case where all roots are real.

Since p(1) = κ/(1 + ση) > 0 and p(+∞) < 0; by continuity and Bolzano’s theorem there
must be at least one real root larger than 1 (λ1) and therefore outside the unit circle. This
root is also the only real root larger or equal to 1, see the Appendix.

Furthermore, we need that p(x) > 0 ∀ x ∈ (−∞,−1] so the other two roots (λ2 and λ3) are
in the interval (-1,1) and thus inside the unit circle. The previous condition will be meet if i)
p(−1) > 0; ii) ∂p(x)

∂x
|x=−1 < 0 and iii) ∂2p(x)

∂x2 |x∈(−∞,−1] > 0.

∂2p(x)
∂x2 = −6x+ 2

(
ση + κ(1 + Ω)

1 + ση
+ 1 + β

)

Due to the form of ∂2p(x)
∂x2 , if ∂2p(x)

∂x2 |x=−1 > 0 −→ ∂2p(x)
∂x2 |x ∈ (−∞,−1] > 0. ∂2p(x)

∂x2 |x=−1 > 0 is met
if and only if Ω > −1 − ση

κ
− (1+ση)(4+β)

κ
; which will always hold due to Ω ≡ η > 0 under

CWID timing and Ω ≡ 1−σ
σ

+ η ∈ (−1,+∞) under CIA timing.

For condition ii we need that:

Ω > −2
3 −

(5/3 + β)(1 + ση)
κ

− (1 + β/3)ση
κ

(6)

Also, p(−1) > 0 if and only if:

Ω > −1
2 − (1 + β)ση

κ
− (1 + ση)(1 + β)

κ
(7)

Note that condition 7 implies condition 6.

To adress the case of two (λ2 and λ3) complex conjugates, we write our polynomial in a more
general form:

p(x) = −(x− λ1)(x− λ2)(x− λ3) = −x3 + bx2 + cx+ d

Where d = λ1λ2λ3 is the independent component. Since |λ2| = |λ3| and λ2λ3 = d 1
λ1

→ |λ3|2 = d 1
λ1
.

d
1
λ1

= β︸︷︷︸
∈(0,1)

ση

λ1 + λ1ση︸ ︷︷ ︸
<1 due to λ1>1

< 1

Therefore, one root is on or outside the unit circle (λ1) and two (λ2 and λ3) inside the unit
circle. The dynamic linear system has a unique and stable solution under any parameter
values for the case of two complex conjugates.
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To see that condition 7 implies an if and only if relation, when condition 7 is not met,
p(−1) ≤ 0, and due to p(−∞) > 0, by continuity and Bolzano’s theorem, there is at least
one real root smaller or equal to -1 (so we are in the case where all roots are real) and thus
outside (or on) the unit circle. �

4. Discussion

From the previous proposition we obtain some straightforward insights. Under CWID timing,
Ω ≡ η > 0; so condition 7 is always met. As a result, in this particular case, the model is
determinate under any set of parameter values, corroborating the findings of Galí’s numerical
analysis.

Under CIA timing, however, the system might not always be determinate. To achieve
indeterminacy one would need: i) a high degree of risk aversion, ii) low interest semi-elasticity
of money demand and iii) a sufficiently high degree of price flexibility.

Note that as we get close to the case of fully flexible prices, κ→∞, iii is no longer needed,
leading to the conditions obtained in Carlstrom and Fuerst (2003). This suggests that in
an economy with sticky prices, an exogenous money growth rule may deliver a determinate
equilibrium even when it would not under flexible prices. As price stickiness increases, the
parameter range yielding determinacy under CIA timing expands. In the limit case of fix
prices, κ = 0, the system is always determinate. The economic intuition for this result is that
as prices are fixed there is no inflation, thus receiving money before or after going to the
goods market is irrelevant as its value remains constant.
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Appendix

Proof that λ1 is the only real root of p(x) for x ∈ [1,+∞):

The slope of the polynomial p(x) is given by:

∂p(x)
∂x

= −3x2 + 2
(
ση + κ(1 + Ω)

1 + ση
+ 1 + β

)
x−

(
(1 + β) ση

1 + ση
+ κΩ

1 + ση
+ β

)
(1)

We will now explore two cases:

• Case 1 : ∂p(x)
∂x
|x=1 > 0

Since ∂p(x)
∂x
|x=−∞ < 0; ∂p(x)

∂x
|x=1 > 0; and ∂p(x)

∂x
|x=+∞ < 0; by continuity and Bolzano’s theorem

there is a root of equation 1 between −∞ and 1 and another root between 1 and +∞. Since
equation 1 is a polynomial of second degree it has only two roots, which implies that there is
one and only one root for equation 1 between 1 and +∞. All of this implies that there is
only one sign change in the slope of p(x) for the interval (1,+∞). Therefore, due to p(1) > 0;
∂p(x)
∂x
|x=1 > 0 and there being only one sign change for x ≥ 1, λ1 is the only real root of p(x)

for x ∈ [1,+∞).

• Case 2 : ∂p(x)
∂x
|x=1 ≤ 0

For ∂p(x)
∂x
|x=1 ≤ 0; it must be the case that:

β + (1− β) ση

1 + ση
+ 2κ

1 + ση
+ κΩ

1 + ση
≤ 1 (2)

Now, the second derivative of p(x) is:

∂2p(x)
∂x2 = −6x+ 2

(
ση + κ(1 + Ω)

1 + ση
+ 1 + β

)

Note that if ∂2p(x)
∂x2 |x=1 < 0→ ∂2p(x)

∂x2 |x≥1 < 0. If the second derivative is negative at x = 1 the
function will be strictly concave for all x ≥ 1. For ∂2p(x)

∂x2 |x=1 < 0 to be the case it must be
that:

ση

1 + ση
+ κ

1 + ση
+ κη

1 + ση
+ β − 1 < 1 (3)

If condition 2 is met, 3 must also be met and therefore p(x) is strictly concave for all x ≥ 1.
All of this implies that since p(1) > 0 and ∂p(x)

∂x
|x=1 ≤ 0, λ1 is the only real root of p(x) for

x ∈ [1,+∞).
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